

WJEC England GCSE Chemistry

Topic 12: The earth and its atmosphere

Notes

(Content in bold is for Higher Tier only)

www.pmt.education

▶ Image: Second Second

The proportions of different gases in the atmosphere

- For 200 million years, the proportions of different gases in the atmosphere have been much the same as they are today:
 - o ~4/5 (80%) nitrogen
 - o ~1/5 (20%) oxygen
 - o Small proportions of various other gases, i.e. CO_2 , $H_2O(g)$ and noble gases
 - ~ means approximately

The Earth's early atmosphere

- Evidence is limited because of the time scale of 4.6 billion years
- One theory suggests that during the first billion years of the Earth's existence...
 - o There was intense volcanic activity that released gases that formed the early atmosphere
 - At the start of this period, the atmosphere may have been like the atmospheres of Mars and Venus today, mainly CO₂ with little or no O₂(g)
 - Volcanoes also produced nitrogen which gradually built up in the atmosphere & there may have been small proportions of methane and NH₃
 - o Water vapour condensed to form the oceans
 - CO₂ dissolved in the water and carbonates were precipitated producing sediments, reducing the amount of CO₂ in the atmosphere

<u>How oxygen increased</u>

• Algae & plants produced the O₂ that is now in the atmosphere by photosynthesis

 $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$ carbon dioxide + water –(light)-> glucose + oxygen

- Algae first produced oxygen about 2.7 billion years ago and soon after this oxygen appeared in the atmosphere
- Over the next billion years plants evolved and the % oxygen gradually increased to a level that enabled animals to evolve

How carbon dioxide decreased

- Algae and plants decreased the $\% CO_2$ in the atmosphere by photosynthesis
- CO₂ was also decreased by the formation of sedimentary rocks and fossil fuels that contain carbon

<u>Greenhouse gases</u>

• Maintain temperatures on Earth high enough to support life

N www.pmt.education

- Include: water vapour, CO₂ & CH₄
- Explanation of the greenhouse gas effect:
 - o Electromagnetic radiation at most wavelengths from the sun passes through the Earth's atmosphere
 - o The Earth absorbs some radiation and thus warms up (essential for life on Earth). But some heat is radiated from the Earth as infrared radiation.
 - o Some of this IR radiation is absorbed by greenhouse gases in the atmosphere
 - o Atmosphere warms up leading to the greenhouse effect and global warming
- Global warming is an 'enhanced greenhouse effect'

Human activities, which contribute to an increase in greenhouse gases in the atmosphere

- Examples include
 - o Driving (CO_2)
 - o Consuming electricity (CO₂)
 - o Raising livestock (cows CH_4)
 - o Decay of organic waste in landfill sites (CH₄)
- Based on peer-reviewed evidence, many scientists believe that human activities will cause the temperature of the Earth's atmosphere to increase at the surface and that this will result in global climate change
 - o But, it is difficult to model such complex systems as global climate change.
 - o This leads to simplified models, speculation and opinions presented in the media that may be based on only parts of the evidence and which may be biased.

Global climate change

- An increase in average global temperature is a major cause of climate change
- There are several potential effects of global climate change
 - o Extinction of species
 - o Raising sea levels due to the melting of polar ice caps
 - o Increased risk of skin cancer due to more dangerous UV rays hitting the surface of the Earth

The carbon footprint and its reduction

- The carbon footprint is the total amount of CO₂ and other greenhouse gases emitted over the full life cycle of a product, service or event.
- It can be reduced by reducing emissions of carbon dioxide and methane.

🕟 www.pmt.education

Atmospheric pollutants from fuels

carbon monoxide:

- If there's not enough oxygen, some of the fuel doesn't burn this is partial combustion. Here, solid particles of soot (carbons) and unburnt fuel are released.
- Carbon monoxide (CO) is also released when there isn't enough oxygen to produce CO₂ instead
- Carbon monoxide causes health problems
- Soot causes global dimming

oxides of nitrogen:

- Nitrogen and oxygen from the air combine to produce nitrogen monoxide
- When this nitrogen monoxide is released from vehicle exhaust systems, it combines with oxygen in the air to form nitrogen dioxide
- nitrogen monoxide and nitrogen dioxide are pollutants

sulfur dioxide

- Most fuels, including coal, contain carbon and/or hydrogen and may also contain some sulfur
- when the fuels are burnt in oxygen, this sulfur can react to form sulfur dioxide
- when sulfur dioxide dissolves in rainwater, acid rain forms:
 - Damages buildings and statues (made of limestone)
 - Reduce the growth of or kill trees and crops
 - Lower pH of water in lakes, killing fish

obtaining potable water

- potable water: it is suitable for drinking so must have:
 - o low levels of microbes
 - o low levels of contaminating substances
 - o it is not the same as pure water but is still safe
- making waste and ground water potable:
 - 1. sedimentation: large insoluble particles will sink to the bottom of the water
 - 2. filtration: water is filtered through beds of sand which removes small insoluble particles
 - 3. chlorination: chlorine gas is put through water to kill microbes
 - making sea water potable using distillation:

N www.pmt.education

- 1. filter the seawater
 - 2. boil it
 - 3. water vapour is cooled and condensed
- water used in analysis:
 - must be pure because any dissolved salts could react with the substances you are analysing, leaving you with a false result

 \odot